Regeneration of ovine articular cartilage defects by cell-free polymer-based implants.

نویسندگان

  • Christoph Erggelet
  • Katja Neumann
  • Michaela Endres
  • Kathrin Haberstroh
  • Michael Sittinger
  • Christian Kaps
چکیده

The aim of our study was the evaluation of a cell-free cartilage implant that allows the recruitment of mesenchymal stem and progenitor cells by chemo-attractants and subsequent guidance of the progenitors to form cartilage repair tissue after microfracture. Chemotactic activity of human serum on human mesenchymal progenitors was tested in 96-well chemotaxis assays and chondrogenic differentiation was assessed by gene expression profiling after stimulating progenitors with hyaluronan in high-density cultures. Autologous serum and hyaluronan were combined with polyglycolic acid (PGA) scaffolds and were implanted into full-thickness articular cartilage defects of the sheep pre-treated with microfracture. Defects treated with microfracture served as controls. Human serum was a potent chemo-attractant and efficiently recruited mesenchymal progenitors. Chondrogenic differentiation of progenitors upon stimulation with hyaluronan was shown by the induction of typical chondrogenic marker genes like type II collagen and aggrecan. Three months after implantation of the cell-free implant, histological analysis documented the formation of a cartilaginous repair tissue. Controls treated with microfracture showed no formation of repair tissue. The cell-free cartilage implant consisting of autologous serum, hyaluronan and PGA utilizes the migration and differentiation potential of mesenchymal progenitors for cartilage regeneration and is well suited for the treatment of cartilage defects after microfracture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering

Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...

متن کامل

Conditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage

Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...

متن کامل

Evaluation of small intestinal submucosa grafts for meniscal regeneration in a clinically relevant posterior meniscectomy model in dogs.

Large meniscal defects are a common problem for which treatment options are limited. Successful meniscal regeneration has been achieved by using grafts of small intestinal submucosa in posterior, vascular meniscal defects in a dog model. This study investigates the long-term effects of a tibial tunnel fixation technique and a clinically based meniscectomy defect on meniscal regeneration using t...

متن کامل

Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold

Objective (s): The scarcity of articular cartilage defect to repair due to absence of blood vessels and tissue engineering is one of the promising approaches for cartilage regeneration. The objective of this study was to prepare an extracellular matrix derived decellularized bovine articular cartilage scaffold and investigate its interactions with seeded rat bone marrow mesenchymal stem cells (...

متن کامل

Mesenchymal Stem Cell Purification from the Articular Cartilage Cell Culture

Objective Articular cartilage as an avascular skeletal tissue possesses limited capacity to heal. On the other hand, it is believed that the regeneration capacity of each tissue is largely related to its stem cell contents. Little is known about the presence of mesenchymal stem cells in articular cartilage tissue. This subject is investigated in the present study. Materials and Methods Artic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 28 36  شماره 

صفحات  -

تاریخ انتشار 2007